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1. NOTATION AND MAIN RESULTS

A mesh of order & is a nondecreasing (kK —— 1)-tuple of reals. If u - = (1, .
Uy 5.y Uy) 1S & mesh, let #u = k denote the order and Au) = max;c,;
(u; — u;_y) the mesh-size of u. On occasion we adopt the view that u is a
collection of open intervals [; - - (u,. 1, u;), called the intervals of u, and we
write 1, € u. A single open interval is a mesh of order one. A partition is a
mesh with nonempty intervals.

If u is a mesh on the open interval (a, b); i.e., u, — a and u,, = b, then
P*(11) is the collection of real functions on (a, b) whose resirictions to the
intervals of u are polynomials of degree at most n — 1. If fe L"a,b).
I < p = oo, and u is mesh on (a, ). let

EL L u) == inf{e ) - S, e 8 € P}

I Hu=1, u--(x ) ==1, we also write E,  (f.« B) or E, ([, 1) for
E, (f, u). The quantities of greatest interest to us are, for k == 1,2, 3,...,

Epnl o by~ ILE, o fo 1) FHu ok vy a,uy, - by,

Let us write
o (i - p Yy
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and with u ranging over all possible meshes on («, b) let

B,.(fyu) =Y E,.{f, 1)y,

Icu

B]),n(f)((l,?!) = lim sup Bp,n(fa ”)»

M=o

Np,n(f)((t.b) == Sup Bpn(f» ”)-

Obviously, it is enough to consider partitions u in the last two equations.
The interval designation (a, b) is often dropped. If f and g are in L*(a, )
then, because ¢ < 1,

B, {f+gu) < B, (f,uy + B, (g u.

Similarly, the functionals B, () and N, () satisfy the triangle inequality,
and, moreover, are homogeneous of degree o.

Derntrion 1.1, Let N#"(a, b) designate the collection of elements f of
L*(a, b) such that N, (f) < co. It is not hard to see that N™™a, b) is a
linear space, which becomes an F-space when supplied with the norm

:f!p.n = llf‘lp + an(f)

For p = oo replace L¥(a, b) by Cla, 8). Only for ¢ = 1 is N*(a, b) a Banach
space, cf. [13], p. 51ff for the terminology and basic facts regarding F-spaces.
The Sobolev space of real functions f possessing on {a, b) an n-th distribu-
tion derivative /™ in L#(q, b) is denoted by W™?(gq, b}, 1 < p =l o and
ne{l, 2 3,..}. Werlot(g by is the collection of locally integrable real
functions f on (a, b) such that fe W ?(x, B)if a < o« < < b.

Main Results. We now state the main results of this paper. Consider a
fixed interval (a, b), positive integer » and 1 <{ p < co.

THeorReM 1.1. (i) The Sobolev space W™V a,b) is contained in N*™(a, b).
Denote the closure of W™Ya, b) in the metric of N*™(a, by by N3""(a, b). Then
if f€ Ny"™(a, b)

lim KME, o(f, k) = By ()1 (O

(i) If either fe W»Ya,b) or else fe W2L1o%g by N L%, b) and

[f ] is monotone a.e. with | f | in Lo(a, b), then fe NJ"™(a, b) and Eq. (1)
holds with

o 4 nlpo ’xn
Bpn(f) == Cp,n !f( )glo s Cpn = Ep,n ( O’ 1) (2}

al’

640/14/2-4
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(iiiy If f'e Wn19%q, by N Li(a, b), then

lil/? inf AE, o (fs k) 5 o 1T 00 3

Throughout, if p = o, we assume f € Cla, b].

Part (i) can be stated in slightly stronger form, by replacing ““ | f | is
monotone” by *“ | £ | has a locally integrable majorant in L%(a, b) which is
monotone near ¢ and near b.”" This is shown in Section 2.

TueoreM 1.2, (i) If fe L¥(a, b) then for each positive integer k
K"E, o(f, k) << Ny a(fYe. @

(i) N, (f) < ooifandonlyif B, f) < .

(i) If fe Wr=tYa, by and fY js of bounded variation, denote the
total variation of f ™=V by || f 1, . Then with d,, = 1/(n — 1)!

Ny o(f) < db — a7 i f™ 0. (5)

(iv) If fe WnLIC(q by and | f'™ | is imonotone, then for some constant
Ml’.n s
" ( ) ey
1 :vn(f) = M:nn f " o = (6)

Previous results on the problems of this paper were obtained by Lawson [6],
Ream [9], Phillips {8], Sacks and Ylvisaker {11} and earlier work referenced
therein, Rice [10], McClure [7], Burchard [1], Freud and Popov {5], Subbotin
and Chernykh [12], de Boor [3], and Dodson [4]. More detailed references
are given at the appropriate places below.

The proofs of Theorems 1.1 and 1.2 begin with establishing the inequalities

Byulfs TWH? < KME o fs THY) = K Eyu(f, k)
= knE‘p’"(f, T2y == Bpn(f: THELe,

(7

Here, 7%t and T+ are meshes of order £ on (a, b), constructed in Section 3,
depending on £, p, n, and k. T*!is an optimal mesh, as is clear from (7), while
T%2 is balanced for f; i.e., E, ,(f, I) has identical values for all intervals 7 of
T#2 Theorems 1.1 and 1.2 follow by proving that the extreme terms in (7)
converge or are bounded as claimed. The requisite approximation theory is in
Section 2.

If p == oo, then we can take 7*! -= T**2 so cquality holds in (7), but in
general this is not so. It is easy, e.g., to explicitly construct counterexamples
forn=1,p =12, For p = o0, see [6].
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The first inequality in (7) follows from Holder’s inequality. De Boor [3] and
Dodson [4] used Holder’s inequality to derive a similar inequality. We have
the following.

LemMMA 1.3. For any mesh u on (a, b) and f in L"(a, b)

By o fo1) <k™E, (fiw)y, k= #u.

Proof. We use Holder’s inequality with dual exponents g = 1/(no) and
q' = plo, so that 1/q + 1/¢" = 1. Consider the vectors y, z € R¥, k = #u,
with components y, =1, z;, = E, (f, I,)°, I; == (u;_y , u;). Then, summing
overi=1,.,k forl <{p < o0

alp

Bulfow) =y -z < (Y1) (X Enal fi 1)7)
- k’mEp,n(fs ).

This generalizes to p = 0.
Phillips [8] showed

Epn(fs8,0) = cpulb — @) [ f(E)], E€la,b], if feCa,b]. (8)

The constant ¢, , is the one that occurs in (3). We do not require this result
here, except in the trivial case f¢ = const. but it is helpful to note that (8)
implies

Byl ) = €5 3. (1 — w2) | fOEN )

with v, < &; < u;, for f€ C*[a, b]. Thus, B, ,(/, u) is a Riemann sum and
we obtain a special case of Theorem 2.8, cf. Section 2 below:

b
Byulf) = lim Byo(fyuw) = & | 1F"O drif feCra bl (10)
Thus, for fin C"[a, b], Theorem 2.8 (ii) below follows from (8). Phillips [8],
in attempting a similar proof made the assumption that an optimal mesh is
necessarily balanced. Since this is valid only for p == oo, his proof is restricted
to this case. (He has the additional restriction that /|, 5 not be a polynomial
of degree n — 1 or less on any interval («, B) C (a, b)).

De Boor and Dodson [3], [4] have obtained asymptotic upper and lower
bounds, instead of the limit in (2), of the form

KILf ™ s
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assuming f'e W*(q, b) and f Riemann integrable. They also derive the
upper bound for | ™ | monotone. Previously, Burchard {1} had obtained
the upper bound for /'€ C*[a, ] and Freud and Popov [5] and Subbotin and
Chernykh [12] have the upper bound that follows from (5) and (6), except
for different multiplicative constants.

Estimates for Spline Functions. Similar to P"(u) 1s S*u), the spline
functions of degree # -~ | on the mesh u. This is the subset of P*(x7) described
by the usual smoothness conditions: If « € R and « occurs with multiplicity
m in the mesh u, then s € S"(u) is to have continuous derivatives at least up to
order n — m -~ 1 at ol = 1y, x <= vy, k- HFu). With v ranging over all
possible meshes on (a, b) let

Pa, b) U P,

Si(a, by = U S™(w).

d il

We have the containment relations
Plmia. b) C S Ma, b) C P (a, b),
and hence the inequalities
Cmyrlkfnl E, (f, [kin]) 2= kn dist,(f. S, "a, b)) = k"E, (f, k). (11)

These inequalities demonstrate that the asymptotic behavior of spline
approximation, as k -— oc on optimal meshes, can be closely estimated in
terms of E, ,(f, k), an idea first used by Rice [10]. Theorem 1.1 shows that for
FeWri(q by or feLa,b),|f™ | monotone (fe Cla, b]ifp = o0), (11)
implies

2wy e, 1 fe, ]in; sup k* dist, (f, S, (a, b))
e lilzl)inf Kk dist, (f, Sy™(a, b))
= Gy s (12)
The last inequality holds for all fin W= L10¢(4 b)),

Relationship between B, ,(f) and N, .(f). We state here and prove
separately the result of Theorem 1.2 (ii) because this is fundamental for the
relevance of the seminorm N, ,( f) to our problems.
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ProposITION 1.4. If fe LPa, b), | <2 p = o0, then N, ,(f) < = if and
only if B, ,(f) < .

Proof. Clearly B, (f) << N, .(f). and so assume B, .(f) < 2o. Then,
if x € [a, b], we can find & > 0 and a finite bound M such that for all meshes
uon (a, b)

> E,(f. D)7~ M. (13)

L
few IC(x—8,248)

For suppose x € [a, b] and no such 6 and M can be found. Letd > 0, A < @
and u a partition on (a, b) such that (13) is violated. It is easy to construct a
partition u' on (a, b) such that: (i) if / is an open interval, 7 C (x — &, x -|- 8)
then Tew iffIcu; ()ifI¢ (x — &, x 1+ 8) and Ieu', then M) < 38.
This implies that XMu') << 33, and B, ,(f, «') => M. This construction may be
carried out for every 8 >0 and M <C oo, and so B, ,(f) = lim sup;u)-a
B, .(f, u) = oo, contrary to the hypothesis. Thus, we can assign to each x in
[a, b] a S-neighborhood and M <C oo such that (13) holds for all meshes .
Select a finite cover of [a, b] by, say m, such neighborhoods. We obtain
X, 0; >0, M, << co,i=1,2,...msuch that

m

(l) [a$ b] C U ('\'i - 87' s Xy ‘.7}" 81’)’
i=1

(14)
(ii) ¥ E, f, 1) < M,

Teu JC{x;—8;,0;48,)

the latter for all meshes u on (@, b), M = maxy;c, M; . Now let ¢(x) =
maxy <<, dist(x, la, b]\Vy), V; = (x; — 8;, x; -+ 6;). We can find a positive &
that bounds ¢ from below on [a, b]. Considering any mesh « on (a, b) we find
that the intervals 7 of u that are not contained in some V; have A(J) > 26.
Thus there are no more than N = [1 + (b — a)(26)~'] such intervals. Since
E, . (f, I) is a monotone function of I, cf. Lemma 2.9 below, the
contribution of such intervals to B, .(f, ) does not exceed N - M,
where M; = E, ,(/f, a, b). For the remaining intervals of v, each contained
in some V;, we have by (14) that

S E.Af. D) < mM,

Tew,(ANICY;

and thus we have shown B, ,(f, u) == N - My -+ m - M, and so N, (f) is
finite.
Cross references are such that (1.7) refers to formula (7) in Section 1.
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2

In this section we establish basic estimates, continuity properties and
approximation theorems for the seminorms B, ,, and N, ,, .

LemMa 2.1, Letd, — 1j(n — D). If f'e Wr=Y(a, b) with =Y ¢ BV(a, b)

-

and 1 < p < o0 then
p n(f a, [)} dn(b _ a)l,; 1 [f()“ Iy "
Npal (Ve < d(b — a)ylio1 i fool, 2)

Here, | f™ |y == [0 1 df "V | is the total variation of the Radon-Stieltjes
measure [ = df "V [n particular, if € W*Ya, b) then (1) and (2) are
valid with || f 7 1y = | f™ ||, .

Proof. Repeated integration by parts establishes Taylor’s formula

J(x) = s(x) 4 d, J( S df e,

i, 1)

where s =0, L.e., s € P"(a, b). Then, for | = p << o,

Epafiat) < d, [[ J‘( REENI c[f‘"*”(dt)\)ﬁ ax]

1\: ([n(b . )1 o-1 ,(N)

For p = o0, (1) follows similarly. Now, let u be a partition of (a, ). Then,
with summation over 7 == 1,..., #u, and using (1) on each interval of the
partition, we obtain

Bza.n(f, ”) = Z Epn(fa g, “z‘)()
- o —u (n) o
= dn Z (“/ T ”i—l)] ;f ! Vol gl
; N - L a
- g - (n)
T dn (Z (“i : l’l‘,,])) (Z f i 31V.(u,-,1.uz))

Ldy O = P v

We have used Holder’s inequality. Now (2) follows by taking the supremum
over all partitions u of (a, b).

DerNITION 2.2, By Lemma 2.1 W*Yqa, b) is contained in N¥"(a, b). By
N7™(a, b) we denote the closure of W™ (a, ) in N*(q, b).
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Lemma 2.1 also shows that S™(u) C N»- for any partition u. The following
inequality of de Boor [3] and Dodson [4] allows us to conclude that an
important class of functions belongs to N;*", cf. Proposition 2.5.

LemMA 2.3, (de Boor and Dodson) If n is a positive integer, 1 <. p < 0,
and if ¢ is a nonnegative and non-decreasing function on (a, b), then the function

P = | (=gt di
satisfies .
Lol < gll.f(a(np + 1Y)
Here we interpret (np + )Y/? =1 for p = o0.
De Boor and Dodson use this lemma for obtaining upper bounds, see

below for more details.

LEMMA 2.4. Suppose fe W™L1%a, b)Y and | f™ | possesses a monotone
majorant g, in the sense that | f ™ (x)| << g(x) a.e. on (a, b). Let ¢ be defined as
in Lemma 2.3 and let M, ,, == (n! (np - DVY7)°, 1 < p < oo. Then

Ep,n(.f: a, b) < dn ii ¥ ;‘7;,((1,11) :; M})/(;L f g 3lia,(/_z.b) 5 (3)
Np,n(f)(a,b) < M,allg :‘g,(n,h) . (4)

In particular fe N?-™a, b) if g € L°(a, b).

Proof. Without loss we may assume that g is nondecreasing, Then
fe Wni{g ) for B < b. Now (3) follows by means of Taylor’s formula as in
the proof of Lemma 2.1, since | /" ! < g a.e. Then, for any mesh v on (a, b)

Bpn(fa u) < AMn,n z H g ‘i‘;g,(ui_l,ui) = Mﬂ.n ‘: g Hg,(n.b) >

summing over i = |,..., #u. Now (4) follows. If ¢ € L°(a, b), then (3) shows
that £ L?(a, b) and (4) shows N, .(f) < oc, hence fis in N?*(q, b).

Among the functions f to which Lemma 2.4 applies are such important
examples as f(x) = x 0 <<x <1,a > —1/p. For these J. R. Rice [10]
proved lim sup;...,, k"E, ,(f. , k) << o0. The suggestion by H. G. Burchard [1]
that this could be attributed to the fact that | /™ | € L°(0, 1) was carried out
successfully by de Boor and Dodson, loc. cit., who made use of the mono-
tonicity of | f{™ | and proved lemma 2.3.

The results just stated are much sharpened as well as generalized in
Theorems 1.1 and 1.2. These depend in part on the following proposition,
which strengthens Lemma 2.4.
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ProOPOSITION 2.5. We assume fe Wnr3tg by and that | f™ . has «
majorant g a.e., satisfying (a) g & LV"%a, by, (b) g € Lo(a, b); (¢) g is monotone
near a and near b. Then fis in N "™a, b). If p = oo, then f has a continuous
extension to [a, b]. More specifically, let € = O and let [ W"Ya, b)Y be
defined such that

JAx) = fly) for a —~¢€« x b e

jf“"(,\‘) =0 for < x ~<Ja ¢ or b —¢€- x-Ib

Then for 1 =< p <%
W (1) = fo b+ Noul/ = £) = 0.

Proof. Note that f1s continuous in {a, b). If g is nondecreasing near ¢ then
[ f@ 1 is actually integrable on each interval [a, 5], B < 4. Similarly near 5.
Thus we consider the case when g is nonincreasing near ¢ and nondecreasing
near b. It follows from Lemma 2.4 that / is in L’(a, b). In particular, for
p = oo f'is a bounded continuous function on (a, b). To avoid trivial repeti-
tions in the arguments we slightly simplify the assertion by assuming that g,
hence | /' |, is actually integrable near a. Accordingly we can now more
simply let £, in W"Y(a, b} be defined such that

Fux) = f(x) for a < x:Zh— e

) =0 for b e x - b

Proceeding with these simplifications in mind, abbreviate ¢ == b — ¢, and
assume € > 0 is sufficiently small such that g is nondecreasing on (c, b).
Then by Lemma 2.4, for 1 < p =< oo,

/ - f( ifp,(nr.b) == / - .fe Igp,(c.h) S (/'n { ®e vip (b))

1o o
RESY 1"/[;}.?1 T8 e -

Here, ¢(x) == [y (x — H)"Lg(t)dr ¢ << x <2 b. The preceeding estimate
shows that f, — fin L?(a, b), by the monotone convergence theorem, since
geLlo(a, b). For p == oo it follows that / has a continuous extension to
{a, b, being the uniform limit of the functions /. in W™¥a, b).

It remains to prove that N, (/ — fJy —~ 0 as e > 0--. Let gylx) - O
for a << x < ¢ and gy(x) = g{x) for ¢ << x < b. Then g, is a monotone
majorant for | £ — f 1 on (a, ). Hence by Lemma 2.4

Np.n(.f - ./l;)(a.b) i Mn,n Lo g.(n,h)
- M

L e
, ot
pou it & iwdeny -
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Again the monotone convergence theorem implies the right-hand side in this
inequality tends to zero, and we have shown fe N;"™(a, b).
Incidentally, we have for the metric of N#"

(e i - 1io i y q s
i/ 7fs ipon T .44‘,_” L8 e T /Wﬂ_” g

in the preceding proof.

The utility of the family of functions NJ"(a, #) stems in part from the fact
that we are able to prove the following lemma about approximation by
splines “‘of one degree higher.”

LEMMA 2.6. For every fe N¥""(a, b) and € > O there exists a 6 > 0 such
that for all partitions u with Mu) <2 8 there is s € S**W(u) with N, ,(f - $) < e.
If fe Wl(a, by we can achieve in addition that (b —a)—° || f0 — s 1] < €/d,°.

Proof. It suffices to show the lemma for f'e W1(a, b). Choose g € C?[a, b]
such that {| f — gt <%, n > 0 to be chosen later. Now let v be any
partition with A(x) <8 where ¢ is chosen so that «w(g", d) <<=, w(:, d)
being the modulus of continuity. Then construct se S*+!(u) so that, for
P b, Fuand u, <<t <u,

sOO(t) =s gu, ).

Then
: s g(n) “1 < n(b _ [7)
and so
| f(n,) . S(n) ‘;, < (“f(n) o g(n) “1 - ug(n) . S(n) :h)a
ol - b — ay.

Hence. by (2),
Nopolf —5) <d, (b — a)'o (1 + b — a) == ¢(x).

Finally, choose n > 0 so that ¢(n) < € and the proof is completed.
The norm B, ,(s) is easily evaluated for s € S7+1(u).

LEMMA 2.7.  For partitions u and v on (a, b) such that each interval of v is
contained in some interval of u and for s € S*+Y(u)

B, () = By (s, v) = ¢, 1™,

where ¢, , = E, (x*, 0, 1)/n!. Notice that |s" |° is piecewise continuous,
hence Riemann integrable.
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Proof. The result (1.8) of Phillips [8], in the trivial case when f" =
const. gives for s € S**(a, b) and all ce R

E,s,a.b)=b—aVoc,, | s"(C)].
on any interval (a, b). Hence if s € S7(¢)
Bp,n(ss Z.) = Z Ep‘u(s> Uioy s l"[-)"

= Z (}f;vn(('i — v, ) S(n)((,i\)‘o

where v,_; < ¢; <v;and 7 = 1...., #r.

TueoreM 2.8. (i) Suppose f < N""(a, b). Then

0

lim B, .(f, u) == B, .(f). (5)
Au)-0

(ity If [ is either in W™(a, b) or else satisfies the hypotheses of Proposi-
tion 2.5 then, more precisely,

o |

\}iI;nO Bﬁ-n(f; 1{) = Cp.n 17‘ w "Z = B]).n(f)! (6)

(¢y.n as in Lemma 2.7).
(i)  Finally, if f € W*L19%qa, by N L*(a, b), then

lim inf B, .(f, u) = ¢}l f7 1.
A(u)-0

Proof. Let € > 0 and choose 8 > 0 as in Lemma 2.6, If A(u) << 6 for a
partition u find s € S"*(u) such that N, (/' — 5) < €/2. Then

! Bpn(f) - Baﬂn(f; u)| < | Bp,n(f) - Bqn,n(s)[ - | Bp,n(S, uy — Bm,n(fs ll)l
= Bﬁ,n(f - 5) + Bp,n(f -5, ”)
T2N, [ f — 8) < e

We have shown (5).
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Next assume fe Wni(q, b). Now, if § >0, AMu) < 5 and s e S"+(u) are
as above, then by Lemmas 2.6 and 2.7
| ¢ A I (n) o
| Bw‘n(,f) Cp,n i}f flor |
S Byl ) = Bl + 1 Salis™ 0 = e i S
SNyl — 5) + ¢ i = £

L2 b b~ @)™ FPNT < 2 (e f2d,7) e

We made use of Holder’s inequality: 1 g|l° << (b — a)*°| g|], and of the

obvious ¢,,,, << d,, . The inequalities above hold for any € > 0, hence
Byn(f) = ¢ 1 F

holds for f'e W™1(qa, b), and thus (5) implies (6) in this case.
Next, let f satisfy the hypotheses of Proposition 2.5. For € > 0 sufficiently
small the function f.(x) defined there has, by (6),

)y be r(n)
Bﬂ,n(.fe) = Cp,n z!fE ‘ll(}.((l,’)) = Cyn ( if i dt.

v ate

Hence
| Byl f) — 5l fO7
< Byulf) — Bonl S+ o 11F P00 — 1700
KNyl f — 1)+ on 1 f ™ — £

The first term on the right tends to zero as € — 0-- by Proposition 2.5, the
second term by the monotone convergence theorem. Thus, since f'e NJ"™(a, b)
by Proposition 2.5, we have shown (5) and (6) in the present case.

Finally, consider the case when f'e W»1.19¢(g by N L?(a, b). If

M < a1,
choose € > 0 so that
a (’IL) “G M
cﬂ.'fl n’f o (a+e,b-~e) > ’
and & > 0 so that, if w is a partition of (a 4+ €, b — €), then A(w) << & implies
| Byl w) — €5 1 S 2 enea | < €

Now, if 7 is a partition of (a, b) with A(u) <C & let w be that partion of (@ + e,
b — €) the intervals of which are the ones of u, intersected with (¢ =- €, b - ¢).
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Clearly A(w) <2 8. since it is easy to see that E, (/. «, B) depends mono-
tonically on the interval (x. 5). Therefore,

b)p.n,(,f-, ”) b)p,'n(,/ﬂ “) T Con / ’ soda ehoed 7€ ) All - €L

This proves (iii). Note that we have not assumed || f " 1], <7 oo,
The monotonicity property of E, .(/, ~, B) used in the preceding proof is
stated as part of the next lemma, needed below for frequent reference.

Lemma 29 Let a -~ w2 B b E, ([, B) depends continuously on
(x, B) for fin L¥(a, b), if | - p < oo, and for fin Cla, bl if p =~ oo. Further-
more E, ([, x. B) is nonincreasing in « and nondecreasing in B. For p = oo and
feCla, b).

Eo oo B) o wlfo B~

The proof is straightforward and is omitted.

We now proceed to establish a companion result of Theorem 2.8 that
greatly strengthens it and that is needed below in the proof of Theorem 1.1;
however, it is well to point out that Theorem 2.8 is all that is required if
Theorem 1.1 is specialized slightly by restricting to functions / in L*(a, b)
such that /(. is never a polynomial of degree /7 -~ 1 or less for

a = - Belb,

The extension of Theorem 2.8 that is needed has to do with the following
“weighted” mesh size, which measures the subintervals / of a partition by the
distance of ffrom P*(I).

DEFINITION 2.10. Let v be a mesh and assume f'e L, , u,), & - #u.
Define

Pyt [} == max Ey Sy i s wy),
ik

the “mesh size of v weighted by /.7 If no confusion can arise, we also write

simply p() for w, (", f).
The relationship between A(w) and w,, (i, f) is as follows.

LEMMA 2.11. Suppose feL”a,b), 1 - p <o, or feCla, bl p = =,
and let u(u, ) = w, (0, f) for partitions u of (a, b). Then

lim plu, f) = 0. (7)

Ala) 0
lim  A(u) = 0 if and only if [ & P'(x, B)
nlu, £)-0
for all intervals  (~, B) C (a, b). (8)
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The straightforward proof is again omitted.

According to this lemma, if f€ L"(a, b) and f has “trivial intervals”
(2, B); 1.e., [ . € PM(a, B) and « << B, then a sequence of partitions !, u?,...
of (a, b) may satisfy lim,,_., u, (¢, /) == 0 but A(z*) may fail to converge to
zero. Then Theorem 2.8 does not allow one to conclude that

limkwn Bpn(f’ Ll/") — Bn,n(f)s

even if f'e NJ""(a, b). This conclusion is nevertheless valid, as we now show.

THEOREM 2.12. Suppose fe L%a, b), | <ip < o0, or feCla, b], p = oo,
and limy ). By o f, u) = B, (f) for meshes u of (a, b). If (u*) is a sequence
of meshes with p,, ,(u*, f) — 0 as k — oo, then

lim BIJ,"(/’ uk) = B}’,n(f)'
k-0

Proof. A trivial interval («, B) of f is one for which E, (f, a, B) = 0.
Clearly each such interval is contained in a maximal open trivial interval.
The maximal open trivial intervals of f'can be arranged in a sequence (V)5 ,
such that lim,., A(V;) == 0. We write

Vi = (ay, Bz)’ i=172,...

It could happen that V; = @ foralli =1, 2,.... Now, let (#*) be a sequence
of meshes on the interval (g, b), write u(*) = ., (", f), and assume

limy,.. p(u*) = 0.

Choose a sequence n1;, of positive integers such that

Py S5y Lt Sy S Mgy S
lim m,;, = oo, )
K-
]lm (’77];, . [I-(I,l]”')o) _ 0 (]0)
P

Foreach k == 1, 2,... define a new mesh »*'! by adjoining to »* the extra knots
Qg eey Uy s Bi s Bmk' Further expand each »*! to a mesh v*? by adding
knots in the trivial intervals V;, 1 < <{ m; , and in such a manner that no
knot in V; is farther than 1/k from either neighbor. Notice that for each k

By o f, utY) = Byl f 1% (n

since u*2 differs from u*1 only by knots added in the trivial intervals of u*1.
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We claim now that

Hm A(z#2) == 0 (12)
k-0
and fork -1, 2,...
| Byl fy utY) — B, f )] <X 2y - b, (13)

This shown, the hypothesis of the theorem in conjunction with {10) will
imply that lim,,, B, ,(f, «*!) == B, .(f). But then the conclusion of the
theorem follows from (10) and (13).

Next, we first show (12). Without loss, assume that lim,.., A(u*?) exists,
otherwise select a suitable subsequence. Then let (¢, , b,) be an interval of
t*2 such that

by a, = Mu"?).

It is understood that a; and b, are neighbors in u** By selecting a further
subsequence, if necessary, we can assume that @, —a, and b, — b, as
k —> 0. Since we assume u(u*) — 0, then also u(u*?) — 0, and hence, by
Lemma 2.9,

lltin,n(fs dy s [)()) = ]IIIU E;n,n(./; g, bk) = 0.

Hence we can find j, 1 = j << oo such that (a,, by) C V; - (a5, B). Since
limy my, = o0, «; and B; belong to u*? for k >» k,. Now if o; = S; then
by — a, = 0 and (12) is shown. Otherwise «; < 8; and by construction of
u*-% neighbors in V; of u*? differ by at most I/k (this is preserved under
selecting subsequences), for & = k, . Since «; < g, << b, << f; it is impossible
to have a, << b, , s0 by — a, == 0, showing (12).

Finally, we prove (13). Recall that by construction

B gk B ; B
uhet ==t U g e s By e Bl

Then clearly
Yy < p(u®) (14)

and (13) will follow by induction over my;, if it can be verified for m;, = 1. Now,
in the latter case, at most two subintervals of u* are disturbed in passing to
u*1. If one subinterval, I, then this is represented by three subintervals
L, L, I in "' and I, is trivial. Furthermore E, . (f, I}) << E, .(f, I) for
! =1, 3 and thus

3 |
E, (fi Iy — Y E, (f. L)y } T 2wy,

23
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whence (13) with m;, = 1. If, however, two subintervals /, J of u* are disturbed
in passing to u*, then four new intervals I , I, , J; , J; appear in v, two of
which are trivial, and moreover E, (f, ) < E, (/. D, E, {f. J) <
E,.{f, JXi =1, 2), and so in this case

'(Ep.n(./; 0° - Ey ol S, J)7) — Z (Epnl /s 1) A Ep (S, T = 2(u?),
[£8Y

whence again (13} with »,, = 1. Thus (13) has been verified for m; = 1. By
induction it follows easily for integers mz;, = 1. because of (14).

3

We now construct the sequences of meshes (7%1)2, and (T%%2,,
depending on fin L?(a, b), for which the relations (1.7) obtain. Combining
this with the results of Section 2 we obtain the proofs of Theorems 1.1 and 1.2.

LEMMA 3.1. For fe L*(a, b), 1 <p << o or feCla, b, p = oo and each
k ==1,2,..., there is a mesh T% such that #T%' = k and

Ep i TFY =E, (LK), k=12, (D
im w(T%1, f) = 0. Q)

|
k-ron

Progf. By the elements of real analysis, limy.., £, (/. k) = 0. Now,
cf. Definition 2.10,

,U'p,n(Tk'l’f) < Ew,n(ﬁ Tk’l)

and so (1) implies (2). To prove the existence of meshes 7% satisfying (1),
note that £, .(f, u) is a continuous function on the compact set

{fueR1 g Sy < Sy < B

by Lemma 2.9, and thus attains its minimum, at some mesh 751,

The next lemma establishes the existence of meshes T#2, These are similar
to partitions used by Burchard {1] for fe C*[a, &], and to partitions used by
de Boor and Dodson [3, 4]. For fe C"[a, b] Burchard used meshes u for
which

max(] £ %, n) (3)

ugq,ugd

(with small positive 5) does not depend on i = 1,..., #u. For f'e C*[q, b] he
showed that these partitions allow to obtain upper bounds for

lim supg.. A"E, (L by for 0 <p < w
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mvolving [| f0 1, . For fe W (a, b) (and f© Riemann integrable) de Boor
and Dodson used meshes such that

(Ui “r’»1)1"“— ; f(u) vy q.0e) (4)

does not depend on /. The meshes u = T%2, to be constructed now. are such
that
E‘p,n(/; ui—ls “i) (5}

does not depend on i. Relationships between the quantities (3), (4), and (5)
are not yet entirely clear. While (5) can be bounded by (4), with a similar
inequality in the opposite direction, ¢f. Phillips’ result (1.8) and also de Boor
and Dodson [3, 4], no such relationship exists between (3) and (5), as is to be
shown in a future paper. We have not yet investigated to what extent proper-
ties of the meshes 7% 2 are shared by the meshes obtained by “*balancing’™ (3)
or (4).

LemMa 3.2. If feL#(a,b) for | i p <o, or feCla, b] for p = o,
there is for each positive integer k a mesh T*? on (a, b) such that #T** = L,
T2 is balanced, and

Ev s TR, TED = pp TH5 F) for i 1, k. (6)
Liln, }Ln,n(’[luzw /) = 0. (7)
Bli.n,(f; ’[‘1.-,2)1,'«; = knEp,n(fa T/"z)- (8)

Proof. Suppose for the moment that (6) holds. Then for | <l p < o
‘U“/Ln(Tk’zs f)p = E])"n(./; TI.-,Z)'p/k = if“:/lﬂ
so (7) follows. For p == oo argue like this: For suitable subscript 7, 1 = i =k,

pond TF% ) = B0l TES, TEY S o(f | TEy — T

cf. Lemma 2.9. This shows (7) for p = co. Next, since | — (o/p) = no we
have for 1 << p < oo, if (6) holds,

B,y ol fo TH2) = k[E, (f, T3 jkleir = knoE, (f, Th2)e,

and (8) follows. For p -= oo, when # = 1/o, (8) is an immediate consequence
of (6).
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To show the existence of meshes T*-2 satisfying (6), we inductively construct
meshes

wh(B) = (a, wH(B)y . wH(B)a seoes W(Bior , B)
with w*(B), == a, w*(B),. = B, and such that
Epon £ W Blicy  wHBY) = (D). 1) = Fi(B)
for i=1,2...k. (9)

This done, we let

and the proof is completed.
The construction of w*(g) is as follows. Having proved the existence of the
meshes w*-1(B) for a << 8 < b we obtain w*(S) in the form

wH(B) = (a, wiYa)y, Wil a)s pey W HA) s, o, ), (10)
where « is the smallest solution of the equation
Fk—l('x) - EI).'n(.fa o, /3) =0. (1 1)

This equation ensures that w*(8) as given in (10) has the property (9). To
show the existence of a smallest solution

a = AB)

we demonstrate by induction simultaneously

A(B) exists and is nondecreasing in 5; (12)
F,(x) 1s continuous and nondecreasing in «: (13)
for k =1,2.... For k = 1, A{(B) = a and Fy(«) = E, ,(/, a, «), and so (12},

(13) follow from Lemma 2.9. If now / is an integer, / == 2, assume (12), (13)
are shown for k = 7 — 1. Next, let k = [. The existence of A,(f) is then clear
from (13) and Lemma 2.9 since these imply the left hand side in (11) is
continuous in « for a <{ « < B, and clearly nonpositive for « = a and non-
negative for « = §. Let a = A,(B) in (10). This defines w*(8) and F(B), and
these satisfy (9). Notice that fora < g << b

Fl(B) == Fia(A(B)) = Ep ol f A(B), B). (14)

To show A,(B) is nondecreasing, assume to the contrary that there are § and
8 = 0 and 4,(8 + 8) < 4,(B). Abbreviate

G(OL, ﬁ) - Eﬂn(f; &, B)

640/14/2-5
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Then we have the following string of relations, consequences of (14),
Lemma 2.9 and induction:

FuB +8) = F (A - 8)) < Fi (Ax(B)) ~= G(A(B). B)
LG4 +8). B) < G(AB + 8). B + 9)
= F(B + 8).

Clearly, we have equality throughout, and so A4,(8) is not the smallest
solution of (11). Hence A,(B) is nondecreasing. This in turn gives: [f
a<<B <fB -+ 8<b,then

FiB) = Fr((A(B)) < Fp (A(B + 8)) == Fi{B + 8),

so F is a nondecreasing function.

We next show that Fj is continuous from the right, omitting a similar
argument for left continuity. Consider a decreasing sequence B, , B, ,... with
limit B and write «; = A,(8;). Then («,) is nonincreasing, bounded below by a
and so converging to some & Notice that 4,(8) < & For each j

Fu(B) = Fiiloy) = Gy, B)).

Hence by induction

lim F(B)) = Fra(d) = G(&, B). (15)

By (14). and since A4,(B) < 4,

G(&’ ,3) < G(AR(B)’ ,8) == Fk(lg) == Flcd(A/c(IB))
= Fk—l(&) - G(&- /9),

so that (15) shows

11m Fls(Bj) . Fk,—l(&) - Fk(B)‘

jo

establishing right-continuity of F, . The proof of left continuity is similar.
This concludes the inductive proof of (12) and (13) and thus of the lemma.

Proofs of Theorems 1.1 and 1.2. These are now immediate from
Theorems 2.8 and 2.12 and Lemmas 1.3, 2.1, 3.1, and 3.2.

Remark. An example showing that N»*a, b) € L?(a, b) is in [1].
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